Causal Discovery from a Mixture of Experimental and Observational Data

نویسندگان

  • Gregory F. Cooper
  • Changwon Yoo
چکیده

This paper describes a Bayesian method for combining an arbitrary mixture of observational and experimental data in order to learn causal Bayesian networks. Observational data are passively observed. Experimental data, such as that produced by randomized controlled trials, result from the experimenter manipulating one or more variables (typically randomly) and observing the states of other variables. The paper presents a Bayesian method for learning the causal structure and parameters of the underlying causal process that is generating the data, given that (1) the data contains a mixture of observational and experimental case records, and (2) the causal process is modeled as a causal Bayesian network. This learning method was applied using as input various mixtures of experimental and observational data that were generated from the ALARM causal Bayesian network. In these experiments, the absolute and relative quantities of experimental and observational data were varied systematically. For each of these training datasets, the learning method was applied to predict the causal structure and to estimate the causal parameters that exist among randomly selected pairs of nodes in ALARM that are not confounded. The paper reports how these structure predictions and parameter estimates compare with the true causal structures and parameters as given by the ALARM network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causal Discovery of Experimental

This paper describes a Bayesian method for combining an arbitrary mixture of observational and experimental data in order to learn causal Bayesian networks. Observational data are passively observed. Experimental data, such as that produced by randomized controlled trials, result from the experimenter manipulating one or more variables (typically randomly) and observing the states of other vari...

متن کامل

Discovery of Causal Relationships in Gene- Regulation Pathway from a Mixture of Experimental and Observational Dna Microarray Data

This paper reports the methods and results of a computer-based search for causal relationships in gene-regulation pathway of galactose metabolism in the yeast Saccharomyces cerevisiae. The search uses recently published data from cDNA microarray experiments. A Bayesian method was applied to learn causal networks from a mixture of observational and experimental gene-expression data. The observat...

متن کامل

Discovery of Causal Relationships in a Gene-Regulation Pathway from a Mixture of Experimental and Observational DNA Microarray Data

This paper reports the methods and results of a computer-based search for causal relationships in the gene-regulation pathway of galactose metabolism in the yeast Saccharomyces cerevisiae. The search uses recently published data from cDNA microarray experiments. A Bayesian method was applied to learn causal networks from a mixture of observational and experimental gene-expression data. The obse...

متن کامل

Ultra-scalable and efficient methods for hybrid observational and experimental local causal pathway discovery

Discovery of causal relations from data is a fundamental objective of several scientific disciplines. Most causal discovery algorithms that use observational data can infer causality only up to a statistical equivalency class, thus leaving many causal relations undetermined. In general, complete identification of causal relations requires experimentation to augment discoveries from observationa...

متن کامل

Discovery of gene-regulation pathways using local causal search

This paper reports the methods and results of a computer-based algorithm that takes as input the expression levels of a set of genes as given by DNA microarray data, and then searches for causal pathways that represent how the genes regulate each other. The algorithm uses local heuristic search and a Bayesian scoring metric. We applied the algorithm to induce causal networks from a mixture of o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999